The effective use of the DSmT for multi-class classification
نویسندگان
چکیده
The extension of the Dezert-Smarandache theory (DSmT) for the multi-class framework has a feasible computational complexity for various applications when the number of classes is limited or reduced typically two classes. In contrast, when the number of classes is large, the DSmT generates a high computational complexity. This paper proposes to investigate the effective use of the DSmT for multi-class classification in conjunction with the Support Vector Machines using the OneAgainst-All (OAA) implementation, which allows offering two advantages: firstly, it allows modeling the partial ignorance by including the complementary classes in the set of focal elements during the combination process and, secondly, it allows reducing drastically the number of focal elements using a supervised model by introducing exclusive constraints when classes are naturally and mutually exclusive. To illustrate the effective use of the DSmT for multi-class classification, two SVMOAA implementations are combined according three steps: transformation of the SVM classifier outputs into posterior probabilities using a sigmoid technique of Platt, estimation of masses directly through the proposed model and combination of masses through the Proportional Conflict Redistribution (PCR6). To prove the effective use of the proposed framework, a case study is conducted on the handwritten digit recognition. Experimental results show that it is possible to reduce efficiently both the number of focal elements and the classification error rate.
منابع مشابه
Exploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملUncertainty Measurement for Ultrasonic Sensor Fusion Using Generalized Aggregated Uncertainty Measure 1
In this paper, target differentiation based on pattern of data which are obtained by a set of two ultrasonic sensors is considered. A neural network based target classifier is applied to these data to categorize the data of each sensor. Then the results are fused together by Dempster–Shafer theory (DST) and Dezert–Smarandache theory (DSmT) to make final decision. The Generalized Aggregated Unce...
متن کاملMULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM
Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...
متن کاملFeature-based Malicious URL and Attack Type Detection Using Multi-class Classification
Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کامل